Nearest-Instance-Centroid-Estimation Linear Discriminant Analysis (NICE LDA)

نویسندگان

  • Rishabh Singh
  • Kan Li
  • Jose C. Principe
چکیده

We propose a novel ensemble classification technique called the Nearest Instance Centroid Estimation (NICE) LDA algorithm. Our algorithm (inspired from NICE KLMS) performs a combination of two weak classifiers threshold based clustering and linear discriminant classification to achieve stateof-the-art results on various high dimensional UCI datasets. We discuss the important ways in which our method of clustering followed by LDA implementation is more robust towards skewed datasets and computationally faster than previous ensemble methods. We also develop an efficient aggregation method based on instance based learning that implements this classification technique using significantly less computational power. We demonstrate that our method of data clustering and LDA implementation, while introducing only one free parameter, leads to results that are similar and often better than those achieved by the state-of-the-art kernel RBF SVMs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved nearest centroid classifier with shrunken distance measure for null LDA method on cancer classification problem

Null linear discriminant analysis (LDA) is a well-known dimensionality reduction technique for the small sample size problem. When the null LDA technique projects the samples to a lower dimensional space, the covariance matrices of individual classes become zero, i.e. all the projected vectors of a given class merge into a single vector. In this case, only the nearest centroid classifier (NCC) ...

متن کامل

Frontal View Recognition Using Spectral Clustering and Subspace Learning Methods

In this paper, the problem of frontal view recognition on still images is confronted, using subspace learning methods. The aim is to acquire the frontal images of a person in order to achieve better results in later face or facial expression recognition. For this purpose, we utilize a relatively new subspace learning technique, Clustering based Discriminant Analysis (CDA) against two well-known...

متن کامل

Modified linear discriminant analysis approaches for classification of high-dimensional microarray data

Linear discriminant analysis (LDA) is one of the most popular methods of classification. For high-dimensional microarray data classification, due to the small number of samples and large number of features, classical LDA has sub-optimal performance corresponding to the singularity and instability of the within-group covariance matrix. Two modified LDA approaches (MLDA and NLDA) were applied for...

متن کامل

Optimal Iterative Discriminant Analysis In Kernel Space

Kernel trick is a powerful tool being used for solving complex pattern classification problem. As long as a linear feature extraction algorithm can be expressed exclusively by dot-products, it can be extended to non-linear version by combining kernel method. In this paper, we present such an improved iterative algorithm used for linear discriminant analysis. By mapping data onto high dimensiona...

متن کامل

Gait Recognition Based on PCA and LDA

This paper proposes a new gait recognition method using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). PCA is first applied to 1D time-varying distance signals derived from a sequence of silhouette images to reduce it’s dimensionality. Then, LDA is performed to optimize the pattern class ificovtion..And,Spatiotemporal Correlation (STC) and Normalized Euclidean Distan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017